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Abstract: By expressing the transient electromagnetic behaviors in terms of continuous orthonormal  Laguerre 
polynomials, we can obtain an unconditionally stable solution of the time domain electric field integral equation 
(TD-EFIE) for three-dimensional (3-D) arbitrary shaped conducting bodies. Besides using Gaussian type pulses, 
rectangular and triangular pulses are also used as incident waves in this method. However, because of the 
discontinuity in a rectangular pulse, Gibbs phenomenon will occur around the point of discontinuity when a 
continuous basis functions are used to approximate the incident wave in a least square sense. Noting that we 
deal with discrete data during our computation in a computer, we introduce the discrete Laugerre functions to 
solve TD-EFIE. They are exactly othonormal in a discrete sense. In this paper, we use the discrete Laguerre 
basis functions to approximate its continuous counterparts and then use them to express the rectangular incident 
wave and the response. Simulation results show that there’s no Gibbs phenomenon. Furthermore, the 
computation of the Laguerre transform of the incident wave is more efficient.  
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1. TD-EFIE

    Let S  denote the surface of an electric conducting body illuminated by a transient electromagnetic wave. 
Since the total tangential electric field is zero on the conducting surface for all times, we have  
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where iE  is the incident field and A  and  are the magnetic vector potential and the electric scalar potential 
given by 
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In (2) and (3), rrR  represents the distance between the arbitrarily located observation point r  and the 
source point r . cRt /  is the retarded time. q is the surface charge density.  and  are the permeability 
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and the permittivity of the medium, and c  is the velocity of the propagation of the electromagnetic wave in that 
space. Equation (1) with (2) and (3) constitutes a TD-EFIE from which the unknown current J  may be 
determined. 
    The surface of the structure to be analyzed is approximated by planar triangular patches. We define the 
spatial basis function associated with the n-th common edge as  
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where nl  and nA  are the length of the edge and the area of triangle nT . n  is the position vector defined with 

respect to the free vertex of nT . The electric current J  on the scattering structure may be approximated in 
terms of the vector basis function as 
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where N  represents the number of common edges, discounting the boundary edges in the triangulated model of 
the conducting object. We introduce a new source vector ),( tre  defined by 
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By using (5) and (6), we may express  
N

n
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  We now solve (1) by applying Galerkin’s method in the MoM context and hence the testing functions are same 
as the expansion functions. By choosing the spatial expansion function )(rfm  also as the spatial testing 
functions, we have from (1) 
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where Nm ,2,1, . In computing (8), we assume that the unknown transient quantity does not 
change appreciably within the triangle so that 
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where p  and q  are + or -. c
mr  is the position vector of the center in triangle nT . With the assumption (9), (8) 

can be written as 
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2. Continuous Laguerre Polynomials and the formulation

An orthonormal basis function set can be derived from the Laguerre functions through the representation ([2], 
[3]) 
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j                                            (14) 

where )(tL j  is the Laguerre polynomial of degree j  and s is the scaling factor. The continuous Laugerre 
transform for en(t) can be given as 
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The expressions of expanding the first and the second derivative of the transient coefficient are given as, 
respectively, 
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Substituting (17) and (15) into (10) and taking a temporal testing with )(sti , we have 
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We note that 0ijI  when ij . Therefore we can write the upper limit of the third summation symbol as i
instead of  in (18). In this result, moving the terms including jne , , which is known for ij , to the right-
hand side, we obtain 
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Rewriting (21) in a simple form, we have 
E

im
E

im

N

n
in

E
mn PVe ,,

1
,                            (22) 

where 
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It is important to note that ][ E
mn  is not a function of the degree of the temporal testing function. Therefore, we 

can obtain the unknown coefficients by solving (22) through an increase in the degree of the temporal testing 
functions.  

3. The discrete Laugerre basis functions and the transforms for rectangular pulse

  The discrete Laguerre functions, defined in the Z domain, can be written as ([1]) 
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The constraint on the pole |a|<1 is set to make the functions causal and stable. It has the following recursive 
form in time domain 
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The discrete Laguerre functions are orthonormal in a discrete sense, which means 
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The integration is along the unit circle in Z plane. In the limit t approaches zero, The sample value 
)( tskj  and ),( akj  become equal as they are related by 
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where t is the sampling interval. The first 5 orders of continuous and discrete Laguerre functions for a = 0.9 
and t = 1 are shown in Fig. 1, where the lines are the continuous functions and dots are the discrete ones.  
    The discrete Laguerre transform can be defined as 
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where en(k) = en(k t) is the kth sample of en(t).
    Using the discrete Laguerre basis functions to approximate the continuous ones, (20) becomes 
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The integration is replaced by the summation. This approach can reduce the computational load and can avoid 
errors introduced in numerical integration.  
  The continuous Laugerre transform of a rectangular pulse can be analytically computed as  
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where t1 and t2 are the start and stop time for the pulse with an amplitude of 1V. The discrete Laguerre 
transform of a rectangular pulse can be computed as 
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where k1 and k2 are the sampled values at the start and stop time. As a reference, we compare the coefficients of 
the Laguerre transforms with that from a Fourier series. It’s known the Fourier series for a rectangular pulse can 
be written as 
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  The transform data for the three kinds for a rectangular pulse with t1 = 1 lm (light meter), t2 = 2 lm, time span T
= 10lm are shown in Fig. 2. We can see that for large orders, the values of the discrete Laugerre transform 
approaches to zero exponentially while the other 2 are oscillating.  
  Reconstruction of the original signal by a discrete Laguerre transforms is more convergent than the continuous 
transforms, which is also shown in Fig. 3.  Unlike the other 2 transforms, the reconstructed signal by the 
discrete transform doesn’t display the well-known Gibbs phenomenon.  

4. Numerical Simulation

  In this paper, an example of scattering analysis of a dipole is shown as in Fig. 4. The dipole is a conducting 
strip with one meter long. A rectangular incident plane wave in the time domain as shown in Fig. 3 is 
propagating along the X axis. We analyze the induced current at the middle edge of the dipole. Figure 5 shows 
the comparison of the currents obtained by continuous and discrete Laugerre basis functions. When we enlarge 
the results in early time in Fig. 6, we can see the response obtained by discrete Laugerre functions is zero when 
there’s no input incident wave. It’s more reasonable than that obtained by the continuous basis functions. The 
oscillation shown in the early time for the continuous basis functions is caused by the Gibbs phenomenon.  

5. Conclusions 

  In this paper we present the discrete Laugerre basis functions in the solution of TD-EFIE. The discontinuous 
rectangular incident wave is used in the scattering analysis. The discrete basis functions are superior to its 
continuous counterpart in the fact of representation the incident wave. It’s more efficient in computing the 
transform data and the Gibbs phenomenon doesn’t exists if we use the discrete basis functions. Since the 
discrete Laguerre functions cannot approximate its continuous counterpart in higher orders, more work is to be 
done for the improvement of the algorithm.  
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